Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nursing homes (NHs) are critical facilities for caring frail older adults with around-the-clock formal care and personal assistance. To ensure quality of care for NH residents, an adequate staffing level is of great importance. Current NH staffing practice is mainly based on experience and regulation. The objective of this paper is to investigate the viability of experience-based and regulation-based strategies, as well as alternative staffing strategies to meet the heterogeneous service demand of NH residents at reduced labor cost under various scenarios of census compositions. We propose a predictive analytics integrated computer simulation model to characterize the heterogeneous service demand of NH residents, and further evaluate and identify promising staffing strategies at the facility level. Specifically, we propose a predictive model based on latent survival analysis to characterize diverse length-of-stay (LOS) with multiple discharge dispositions among NH residents. Further, we develop a simulation model with the incorporation of predictive analytics and domain knowledge to characterize the heterogeneous service demand of NH residents on different types of caregivers over time. Based on the simulation model, we develop a graphical user interface for the simulator to evaluate different staffing strategies at the facility level and inform NH administrators about promising strategies. We use real NH data to validate the proposed model and demonstrate its effectiveness. The proposed predictive LOS model considering multiple discharge dispositions exhibits superior prediction performance and offers better staffing decisions at reduced costs than those without the consideration. With the improved modeling fidelity via integrating predictive analytics with computer simulation, the proposed model is flexible to evaluate various staffing strategies using total labor cost as a performance metric, and can identify promising staffing strategies to meet the service demand of NH residents. Promising staffing strategies with the suggested staff-to-resident (SR) ratio can significantly reduce the total labor cost of multiple types of caregivers, as compared to the benchmark strategies, such as the SR ratios based on industrial practice or minimum requirement of state regulation. Moreover, we construct multiple scenarios of different census compositions of NH residents to demonstrate the capability of the proposed model. Our proposed model can facilitate NH staffing decision making to meet the heterogeneous service demand of NH residents at reduced labor costs.more » « less
-
Whether to evacuate a nursing home (NH) or shelter in place in response to the approaching hurricane is one of the most complex and difficult decisions encountered by nursing home administrators. A variety of factors may affect the evacuation decision, including storm and environmental conditions, nursing home characteristics, and the dwelling residents’ health conditions. Successful prediction of evacuation decision is essential to proactively prepare and manage resources to meet the surge in nursing home evacuation demands. In current nursing home emergency preparedness literature, there is a lack of analytical models and studies for nursing home evacuation demand prediction. In this paper, we propose a predictive analytics framework by applying machine learning techniques, integrated with domain knowledge in NH evacuation research, to extract, identify and quantify the effects of relevant factors on NH evacuation from heterogeneous data sources. In particular, storm features are extracted from Geographic Information System (GIS) data to strengthen the prediction accuracy. To further illustrate the proposed work and demonstrate its practical validity, a real-world case study is given to investigate nursing home evacuation in response to recent Hurricane Irma in Florida. The prediction performance among different predictive models are also compared comprehensively.more » « less
An official website of the United States government

Full Text Available